Nervenheilkunde 2023; 42(09): 612-620
DOI: 10.1055/a-2133-1575
Schwerpunkt

Kann KI Parkinson?

Die Beschreibung dopasensitiver Beweglichkeit mit Hilfe maschinellen LernensAI and Parkinson?How to describe dopa-sensitive movement using machine learning
Urban M. Fietzek
1   Neurologische Klinik und Poliklinik LMU-Klinikum München
2   Deutsches Zentrum für Neurodegenerative Erkrankungen, Standort München
4   Schön Klinik München Schwabing, Abt. Neurologie und klinische Neurophysiologie, München
,
Moritz Messner
3   Medizinische Fakultät, Ludwig-Maximilians-Universität München
,
Johannes Levin
1   Neurologische Klinik und Poliklinik LMU-Klinikum München
2   Deutsches Zentrum für Neurodegenerative Erkrankungen, Standort München
› Author Affiliations

ZUSAMMENFASSUNG

Die Zunahme mobilitätseinschränkender Erkrankungen wie Morbus Parkinson führt zu einer zunehmend stärkeren Belastung der Gesundheits- und Pflegesysteme. Fortschritte in der Mikroelektronik und der digitalen Datenverarbeitung ermöglichen im Sport- und Freizeitbereich seit geraumer Zeit die nicht invasive und ungestörte Erfassung von Bewegungsdaten über lange Zeiträume. Im medizinischen Bereich für die Bewegungsstörungen verspricht diese Technologie, sowohl die Forschungsansätze als auch die klinische Versorgung zu verbessern. Eine kontinuierliche Überwachung von Symptomen könnte das Erkennen von Parkinsonsymptomen an sich ermöglichen, ein Therapieansprechen detektieren oder die Indikation für Interventionen oder eine Therapieeskalation durch eine objektive Datengrundlage unterstützen.

Konkret stellt sich uns in diesem Beitrag die Frage, auf welchem Stand wir uns bei der Beschreibung von dopasensitiven Parkinsonsymptomen mit Sensoren befinden. Dabei werden wir nicht nur die vielfältigen Möglichkeiten, sondern auch die Herausforderungen diskutieren, die sich mit dieser neuen Technologie ergeben und die eine breitere Anwendung bislang verhindert haben. Wir beenden unseren Beitrag mit einem Ausblick, der Empfehlungen zur Überwindung dieser Herausforderungen gibt.

ABSTRACT

The rise of mobility-impairing diseases such as Parkinson’s disease (PD) is putting an increasingly heavy burden on health and care systems. Advances in microelectronics and digital data processing have long enabled the non-invasive and uninterrupted collection of movement data over long periods of time in the sports and recreation fields. In the medical field for movement disorders, this technology promises to improve both research approaches and clinical care. Continuous monitoring of symptoms could enable detection of Parkinson’s symptoms per se, detect therapy response, or support indications for intervention or therapy escalation based on objective data.

Specifically, in this paper we will address the question of where we stand in terms of describing Dopa-sensitive Parkinson’s symptoms with sensors. In doing so, we will discuss not only the many possibilities but also the challenges that arise with this new technology and that have impeded its widespread application so far. We will end our paper with an outlook that provides recommendations on how to overcome these challenges.



Publication History

Article published online:
04 September 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Heinzel S, Berg D, Binder S. et al Do We Need to Rethink the Epidemiology and Healthcare Utilization of Parkinson’s Disease in Germany?. Front Neurol 2018: 9
  • 2 Postuma RB, Berg D, Stern M. et al MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord Off J Mov Disord Soc 2015; 30: 1591-1601
  • 3 Virameteekul S, Revesz T, Jaunmuktane Z. et al Clinical Diagnostic Accuracy of Parkinson’s Disease: Where Do We Stand?. Mov Disord 2023; 38: 558-566
  • 4 Yoo D, Bang J-I, Ahn C. et al Diagnostic value of α-synuclein seeding amplification assays in α-synucleinopathies: A systematic review and meta-analysis. Parkinsonism Relat Disord 2022; 104: 99-109
  • 5 Robinson JL, Xie SX, Baer DR. et al Pathological combinations in neurodegenerative disease are heterogeneous and disease-associated. Brain 2023; 146: 2557-2569
  • 6 Schalkamp A-K, Peall KJ, Harrison NA. et al Wearable movement-tracking data identify Parkinson’s disease years before clinical diagnosis. Nat Med. 2023
  • 7 Goetz CG, Tilley BC, Shaftman SR. et al Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 2008; 23: 2129-2170
  • 8 Hauser RA, Friedlander J, Zesiewicz TA. et al A home diary to assess functional status in patients with Parkinson’s disease with motor fluctuations and dyskinesia. Clin Neuropharmacol 2000; 23: 75-81
  • 9 Ferreira JJ, Lees A, Rocha J-F. et al Opicapone as an adjunct to levodopa in patients with Parkinson’s disease and end-of-dose motor fluctuations: a randomised, double-blind, controlled trial. Lancet Neurol. 2015
  • 10 Borgohain R, Szasz J, Stanzione P. et al Two-year, randomized, controlled study of safinamide as add-on to levodopa in mid to late Parkinson’s disease. Mov Disord Off J Mov Disord Soc 2014; 29: 1273-1280
  • 11 Olanow CW, Kieburtz K, Odin P. et al Double-Blind, Double-Dummy, Randomized Study of Continuous Intrajejunal Infusion of Levodopa-Carbidopa Intestinal Gel in Advanced Parkinson’s Disease. Lancet Neurol 2014; 13: 141-149
  • 12 Hauser RA, Hsu A, Kell S. et al Extended-release carbidopa-levodopa (IPX066) compared with immediate-release carbidopa-levodopa in patients with Parkinson’s disease and motor fluctuations: a phase 3 randomised, double-blind trial. Lancet Neurol 2013; 12: 346-356
  • 13 Rosebraugh M, Voight EA, Moussa EM. et al Foslevodopa/Foscarbidopa: A New Subcutaneous Treatment for Parkinson’s Disease. Ann Neurol 2021; 90: 52-61
  • 14 Artusi CA, Mishra M, Latimer P. et al Integration of technology-based outcome measures in clinical trials of Parkinson and other neurodegenerative diseases. Parkinsonism Relat Disord 2018; 46: S53-S56
  • 15 1 vs 8,765. Sara Riggare 2014. https://www.riggare.se/1-vs-8765/ Stand: 14.08.2023
  • 16 Riggare S, Hägglund M, Bredenoord AL. et al Ethical Aspects of Personal Science for Persons with Parkinson’s Disease: What Happens When Self-Tracking Goes from Selfcare to Publication?. J Park Dis 2021; 11: 1927-1933
  • 17 Ethikrat: Künstliche Intelligenz darf menschliche Entfaltung nicht vermindern. 2017.. https://www.ethikrat.org/mitteilungen/mitteilungen/2023/ethikrat-kuenstliche-intelligenz-darf-menschliche-entfaltung-nicht-vermindern/?cookieLevel=not-set Stand: 14.08.2023
  • 18 Lance JW, Schwab RS, Peterson EA. Action Tremor and the cogwheel phenomenon in Parkinson’s disease. Brain 1963; 86: 95-110
  • 19 Dimitrijevic MR, Nathan PW. Studies of Spasticity in man: 4. changes in flexion reflex with repetitive cutaneous stimulation in spinal man. Brain 1970; 93: 743-768
  • 20 Koller W, Herbster G, Cone S. Clonidine in the treatment of essential tremor. Mov Disord Off J Mov Disord Soc 1986; 01: 235-237
  • 21 Del Din S, Kirk C, Yarnall AJ. et al Body-Worn Sensors for Remote Monitoring of Parkinson’s Disease Motor Symptoms: Vision, State of the Art, and Challenges Ahead. J Park Dis 2021; 11: S35-S47
  • 22 Rovini E, Maremmani C, Cavallo F. How Wearable Sensors Can Support Parkinson’s Disease Diagnosis and Treatment: A Systematic Review. Front Neurosci 2017; 11: 555
  • 23 Warmerdam E, Hausdorff JM, Atrsaei A. et al Long-term unsupervised mobility assessment in movement disorders. Lancet Neurol 2020; 19: 462-470
  • 24 Rosenthal R, Fode KL. The effect of experimenter bias on the performance of the albino rat. Behav Sci 1963; 08: 183-189
  • 25 Parsons HM. What Happened at Hawthorne?. Science 1974; 183: 922-932
  • 26 Mikolaizak AS, Rochester L, Maetzler W. et al Connecting real-world digital mobility assessment to clinical outcomes for regulatory and clinical endorsement–the Mobilise-D study protocol. PLOS ONE 2022; 17: e0269615
  • 27 Maetzler W, Rochester L, Bhidayasiri R. et al Modernizing Daily Function Assessment in Parkinson’s Disease Using Capacity, Perception, and Performance Measures. Mov Disord Off J Mov Disord Soc 2021; 36: 76-82
  • 28 WHO. International Classification of Functioning, Disability and Health (ICF). Genf, 2001
  • 29 Horne MK, McGregor S, Bergquist F. An objective fluctuation score for Parkinson’s disease. PloS One 2015; 10: e0124522
  • 30 Griffiths RI, Kotschet K, Arfon S. et al Automated assessment of bradykinesia and dyskinesia in Parkinson’s disease. J Park Dis 2012; 02: 47-55
  • 31 Ossig C, Gandor F, Fauser M. et al Correlation of Quantitative Motor State Assessment Using a Kinetograph and Patient Diaries in Advanced PD: Data from an Observational Study. PloS One 2016; 11: e0161559
  • 32 Rodríguez-Molinero A, Pérez-López C, Samà A. et al A Kinematic Sensor and Algorithm to Detect Motor Fluctuations in Parkinson Disease: Validation Study Under Real Conditions of Use. JMIR Rehabil Assist Technol 2018; 05: e8
  • 33 Rodríguez-Martín D, Pérez-López C, Samà A. et al A Waist-Worn Inertial Measurement Unit for Long-Term Monitoring of Parkinson’s Disease Patients. Sensors. 2017: 17
  • 34 Curtze C, Nutt JG, Carlson-Kuhta P. et al Levodopa Is a Double-Edged Sword for Balance and Gait in People With Parkinson’s Disease. Mov Disord Off J Mov Disord Soc 2015; 30: 1361-1370
  • 35 Ghoraani B, Galvin JE, Jimenez-Shahed J. Point of view: Wearable systems for at-home monitoring of motor complications in Parkinson’s disease should deliver clinically actionable information. Parkinsonism Relat Disord 2021; 84: 35-39
  • 36 Pulliam CL, Heldman DA, Brokaw EB. et al Continuous Assessment of Levodopa Response in Parkinson’s Disease Using Wearable Motion Sensors. IEEE Trans Biomed Eng 2018; 65: 159-164
  • 37 Pfister FMJ, Ceballos-Baumann AO, Fietzek UM. Time for change – closing the loop in Parkinson’s Disease. Basal Ganglia 2016; 06: 191
  • 38 Pfister FMJ, Um TT, Pichler DC. et al High-Resolution Motor State Detection in Parkinson’s Disease Using Convolutional Neural Networks. Sci Rep 2020; 10: 5860
  • 39 Goschenhofer J, Pfister FMJ, Yuksel K. et al Wearable-Based Parkinson’s Disease Severity Monitoring Using Deep Learning. In: Machine Learning and Knowledge Discovery in Databases. Würzburg: Springer International Publishing 2020
  • 40 Artusi CA, Espay AJ. Comment on: “Point of view: Wearable systems for at-home monitoring of motor complications in Parkinson’s disease should deliver clinically actionable information”. Parkinsonism Relat Disord 2021; 86: 133
  • 41 Williams S, Wong D, Alty JE. et al Parkinsonian Hand or Clinician’s Eye? Finger Tap Bradykinesia Interrater Reliability for 21 Movement Disorder Experts. J Park Dis 2023; 13: 525-536